|
[0 1 1 2 2 2 1 1 2 1 2 2 2 2 2 1] [1 0 1 1 2 2 2 1 1 2 1 2 2 2 2 2] [1 1 0 1 1 2 2 2 2 1 2 1 2 2 2 2] [2 1 1 0 1 1 2 2 2 2 1 2 1 2 2 2] [2 2 1 1 0 1 1 2 2 2 2 1 2 1 2 2] [2 2 2 1 1 0 1 1 2 2 2 2 1 2 1 2] [1 2 2 2 1 1 0 1 2 2 2 2 2 1 2 1] [1 1 2 2 2 1 1 0 1 2 2 2 2 2 1 2] [2 1 2 2 2 2 2 1 0 2 1 1 2 1 1 2] [1 2 1 2 2 2 2 2 2 0 2 1 1 2 1 1] [2 1 2 1 2 2 2 2 1 2 0 2 1 1 2 1] [2 2 1 2 1 2 2 2 1 1 2 0 2 1 1 2] [2 2 2 1 2 1 2 2 2 1 1 2 0 2 1 1] [2 2 2 2 1 2 1 2 1 2 1 1 2 0 2 1] [2 2 2 2 2 1 2 1 1 1 2 1 1 2 0 2] [1 2 2 2 2 2 1 2 2 1 1 2 1 1 2 0] [24, -4, -4, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0 1 1 2 2 2 1 1 2 1 2 2 2 2 2 1] [1 0 1 1 2 2 2 1 1 2 1 2 2 2 2 2] [1 1 0 1 1 2 2 2 2 1 2 1 2 2 2 2] [2 1 1 0 1 1 2 2 2 2 1 2 1 2 2 2] [2 2 1 1 0 1 1 2 2 2 2 1 2 1 2 2] [2 2 2 1 1 0 1 1 2 2 2 2 1 2 1 2] [1 2 2 2 1 1 0 1 2 2 2 2 2 1 2 1] [1 1 2 2 2 1 1 0 1 2 2 2 2 2 1 2] [2 1 2 2 2 2 2 1 0 2 1 1 2 1 1 2] [1 2 1 2 2 2 2 2 2 0 2 1 1 2 1 1] [2 1 2 1 2 2 2 2 1 2 0 2 1 1 2 1] [2 2 1 2 1 2 2 2 1 1 2 0 2 1 1 2] [2 2 2 1 2 1 2 2 2 1 1 2 0 2 1 1] [2 2 2 2 1 2 1 2 1 2 1 1 2 0 2 1] [2 2 2 2 2 1 2 1 1 1 2 1 1 2 0 2] [1 2 2 2 2 2 1 2 2 1 1 2 1 1 2 0] [24, -4, -4, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
|
|
(II) the Gosset Graph: {0: 48, -12: 7, 84: 1} (III) the Schlaefli Graph: {0: 20, -6: 6, 36: 1} (VI) the three Chang Graphs: {0: 20, 42: 1, -6: 7} {0: 20, 42: 1, -6: 7} {0: 20, 42: 1, -6: 7} (IX) the icosahedral Graph: {-0.763932022500211?: 3, -5.236067977499789?: 3, 18: 1, 0: 5} (XII) the Petersen Graph: {0: 4, -3: 5, 15: 1} (XIII) the dodecahedral Graph: {-2: 4, 50: 1, -13.70820393249937?: 3, -0.2917960675006309?: 3, 0: 9} Checking numerical values: -5.236067977499789? = -3-sqrt(5)? True -0.763932022500211? = -3+sqrt(5)? True -13.70820393249937? = -7-3*sqrt(5)? True -0.2917960675006309? = -7+3*sqrt(5)? True (II) the Gosset Graph: {0: 48, -12: 7, 84: 1} (III) the Schlaefli Graph: {0: 20, -6: 6, 36: 1} (VI) the three Chang Graphs: {0: 20, 42: 1, -6: 7} {0: 20, 42: 1, -6: 7} {0: 20, 42: 1, -6: 7} (IX) the icosahedral Graph: {-0.763932022500211?: 3, -5.236067977499789?: 3, 18: 1, 0: 5} (XII) the Petersen Graph: {0: 4, -3: 5, 15: 1} (XIII) the dodecahedral Graph: {-2: 4, 50: 1, -13.70820393249937?: 3, -0.2917960675006309?: 3, 0: 9} Checking numerical values: -5.236067977499789? = -3-sqrt(5)? True -0.763932022500211? = -3+sqrt(5)? True -13.70820393249937? = -7-3*sqrt(5)? True -0.2917960675006309? = -7+3*sqrt(5)? True |
|
Print "n done" if there is no tree on n vertices with q_D(T)<diam(T)+1 1 done 2 done 3 done 4 done 5 done 6 done 7 done 8 done 9 done 10 done 11 done 12 done 13 done 14 done 15 done 16 done 17 done 18 done 19 done 20 done Print "n done" if there is no tree on n vertices with q_D(T)<diam(T)+1 1 done 2 done 3 done 4 done 5 done 6 done 7 done 8 done 9 done 10 done 11 done 12 done 13 done 14 done 15 done 16 done 17 done 18 done 19 done 20 done |